

Greenhouse gas emissions from arable and vegetable cropping systems

Steve Thomas & Sam McNally

Background

- NZ
 - Agriculture contributes 50% of NZ total emissions
 - Agricultural emission reduction targets (CH₄)
 - Agricultural emission pricing 2025

- Cropping
 - Lack of research on emissions in NZ
 - Lack of quantification through crop rotations
 - Lack of mitigation advice

GHG emissions from arable and vegetable rotations

- Background to the studies:
 - Lack of industry knowledge
 - Where do we fit?
 - What are the key emitters?
 - What are the key levers?
 - He Waka Eke Noa
 - Effect of rotations
 - Lack of NZ relevant research
- Method
 - Inventory approach emission budget
 - Within the farm gate

Arable rotation

Q

Key sources of GHG emissions from an arable rotation

Activity	Gas	Arable (%)
Grazing	CH ₄ N ₂ O	30 2
Residue N	N ₂ O	27
Fertiliser N	N ₂ O	20
Indirect N	N ₂ O	5
Fuel	CO ₂	10
Irrigation	CO_2	6

Contributions of different arable crops to overall emissions

Crop	Source 1	Source 2
Ryegrass seed	Fertiliser	Grazing
Ryegrass grazing	Grazing	
Beans	Fertiliser	Residue
Oats- forage	Grazing	
Kale - seed	Residue	Fertiliser
Peas	Fuel	Residue
Carrots	Residue	Fertiliser
Oats - greenfeed	Grazing	Fertiliser

Vegetable rotation

Q

Key sources of GHG emissions from a vegetable rotation

Activity	Gas	Vegetable (%)
Grazing	CH ₄ N ₂ O	12 1
Residue N	N ₂ O	36
Fertiliser N	N ₂ O	28
Indirect N	N ₂ O	8
Fuel	CO ₂	15

Contributions of different vegetable crops to overall emissions

Crop	Source 1	Source 2
Squash	Residue	Fertiliser
Oats- forage	Grazing	
Process peas	Residue	
Carrot seed	Residue	Fertiliser
Barley	Fertiliser	Residue
Brocolli	Residue	Fertiliser
Onions	Fertiliser	

Summary of key sources of GHG emissions in an arable and vegetable rotation

Is this information useful to farmers?

- Pros
 - Simple
 - Identifies big management drivers
 - Easy to look at all gases
 - Consistent with inventory
 - Uses NZ specific factors
 - Allows comparison between different crops and systems
 - Aligns with He Waka Eke Noa accounting

- Cons
 - Most crops are not accounted for in the inventory. Information on residues is lacking especially
 - Ignores key soil and climate drivers (N₂O)
 - Drainage
 - Aeration
 - pH
 - Rainfall
 - Ignores specific management effects
 - Machinery/animal traffic
 - Irrigation
 - N surpluses
 - Fallow periods
 - Does not account for changes in soil C
 - Difficult to design mitigations beyond high level drivers –ie. fertiliser and residues
 - Offsite emissions of residues? Who is responsible?

Acknowledgements

- Foundation for Arable Research (FAR)
- Vegetable Research and Innovation Board (VR&I)
- Steve Dellow, Jo Sharp
- Dirk Wallace, Abie Horrocks

Thank you

steve.thomas@plantandfood.co.nz

Asmart green future. Together.

The New Zealand Institute for Plant and Food Research Limited