

Soil N testing to improve N management of annual crops

Mike Beare Agronomy Society Symposium 31 August 2022

Background

- Good N management is important
 - Ensuring N supply meets crop demand
 - Minimising N losses & complying with policy limits
 - Improving N use efficiency, reducing costs
- More precise N fertiliser forecasting is critical
 - Understand and match N supply with crop demand
 - <u>Right amount</u>, <u>right time</u>, right type & right place
- Predicting soil N supply still major challenge
 - Pre-existing test methods and model predictions poor
 - Major limitation to fertiliser N forecasting
 - Recent advances soil N testing key to the challenge

Sources and Supply of N for Crop Uptake

Forecasting N mineralisation: What is needed? Rapid & reliable test for Potentially Mineralisable N (PMN) Verified methods for predicting how much of the PMN is mineralised under field conditions Soil water Soil temperature Potentially Mineral N Mineralisable N (1%–5% total soil N) Soil laboratory incubation (Optimal conditions) [e.g. 25°C, Field capacity soil water, 98 days]

Measuring Potentially Mineralisable Nitrogen (PMN)

- "Gold Standard" method for PMN
 - Aerobic incubation (14 wks; 25°C; 90% FC)
 - Not suitable for rapid, routine testing
- Testing for PMN
 - Pre-existing AMN test not reliable
 - Hot Water Extractable Organic N good predictor
 - Rapid, reliable (high precision) & cost effective
 - Commercial test protocol developed (PMN_{Test})
- PMN_{Test} available to growers
 - Objective build farmer confidence in testing
 - Commercial labs now offering the test

Hot Water Extractable Organic N (mg/kg soil)

Q

Potentially Mineralisable N in New Zealand Soils (0-15 cm)

PMN (kg N/ha) = PMN (mg/kg) x depth (cm) x bulk density (g/cm³) x 0.1

PMN (kg N/ha) affected by:

- Soil Order
- Land use & management history

Soil Order	Dairy	Drystock	Arable crop	Veg crop
Allophanic	216 ± 38	213 ± 48	ND	105 ± 33
Brown	189 ± 60	179 ± 52	91 ± 28	45 ± 19
Pallic	293 ± 70	227 ± 51	84 ± 24	69 ± 23
Gley	211 ± 51	158 ± 9	116 ± 39	76 ± 24
Recent	231 ± 47	171 ± 43	93 ± 32	81 ± 27

Adapted from: Curtin, Beare et al 2017. SSSAJ 81(4): 979-991

Predicting in-field N mineralisation from PMN

- N mineralised in the field is a function of soil temp & water content during growing season
- > In-field N_{min} = \sum_{1-n} (PMN (kgN/ha/d) x T_f x W_f)
 - T_f: Lloyd-Taylor (1994), where N mineralisation is a function of mean daily soil temperature
 - W_f: Qiu et al (2022), where N mineralisation is a function of relative available soil water content (Adapted from Paul et al (2003))

Qiu, Curtin & Beare (2022) Soil Research

Validation Trials Verifying predictions of in-field N mineralisation

- Field Trials
 - Different crops (wheat, barley, ryegrass seed, kale, carrot, broccoli, onion, potato, sweetcorn, etc)
 - Different soils and climates (Canterbury, Hawke's Bay & Waikato)
 - Zero, Low, medium (Good practice) and high rates N Fertiliser
- Measuring in-field N mineralisation (N balance)
 - PMN and mineral N in root zone at sowing
 - Yield and crop N uptake (above-ground & roots)
 - Mineral N in root zone at harvest
 - Soil temp; soil water content (0-15 cm; daily mean)
 - Nmin = Crop N + Final soil min-N Initial soil min-N
- Predicted vs Measured N mineralisation

Grain yield, N uptake and Residual Mineral N Wheat (Southbridge)

Industry guideline N Fertiliser rate (excl N mineralisation) = 273 kg N/a

Crop yield, N uptake and Residual Mineral N Carrots (Lincoln)

- Soil mineral N and PMN provided all of the N needed to meet crop demand
- High risk of N losses after crop harvest

How is N partitioned in crops?

н.

How much N was supplied from soil, residues & fertiliser?

N Mineralisation (Measured vs Predicted)

Wheat N Decision Trials (Chertsey)

Q

Autumn sown feed Wheat 150 plants/m², 15 cm rows Plots (8 m x 1.65 m) No N applied prior to spring

Two water management trials

- Irrigated
- Dryland

COLZ - IKKIGATED					
	Grass Lanewa	θy			
Buff	er				
401 4	301 3	201 5	101 2		
402 2	302 4	202 3	102 1		
403 1	303 5	203 4	103 3		
404 3	304 2	204 1	104 5		
405 5	305 1	205 2	105 4		
Block 4	Block 3	Block 2	Block 1		
Buffer					

A LA INDIANTER

Grass Laneway						
	Buffer					
101 4	201 2 301 5	401 3				
102 5	202 5 302 4	402 2				
103 1	203 4 303 3	403 1				
104 2	204 3 304 1	404 4				
105 3	205 1 305 2	405 5				
Block 1 Block 2 Block 3 Block 4						
Buffer						

Col 1 - DRYLAND

Nitrogen Management Treatments

Treatment 1: Full industry guideline N fertiliser rate (25 kg N/ha per t of target grain yield)

Treatment 2: Full N rate – initial mineral N (0-30 cm)

Treatment 3: Full N rate – initial mineral N and predicted N mineralisation (0-30 cm)

Treatment 4: Full N rate – initial mineral N (0-30 cm), adjusted using Quick N tool

Treatment 5: Zero (nil) N fertiliser applied

Fertiliser N applied to the N Decision Trials

	Irrigated Wheat		Fertiliser N applied (kg N/ha)			
	Target grain yield = 12 t/ha	Trt No.	Early N	GS 32	GS39	Total N
Initial mineral N = 18 kg/ha	Full N rate	1	40	174	86	300
	Full N – mineral N	2	38	164	81	282
Mineralised N = 57 kg/ha	Full N – (min N + Mineralised N)	3	30	131	65	225
	Full N – (min N + Quick N Tool)	4	38	37	80	155
	Nil Fertiliser N	5	0	0	0	0

	Dryland Wheat		Fertiliser N applied (kg N/ha)			
	Target grain yield = 8 t/ha	Trt No.	Early N	GS 32	GS39	Total N
Initial mineral N = 29 kg/ha	Full N rate	1	40	107	53	200
	Full N – mineral N	2	34	92	45	171
Mineralised N = 47 kg/ha	Full N – (min N + Mineralised N)	3	25	66	33	124
	Full N – (min N + Quick N Tool)	4	34	23	38	95
	Nil Fertiliser N	5	0	0	0	0

Performance Indicators

Irrigated Wheat (Target yield = 12 t/ha)

Treatment	N Fertiliser (kg/ha)	Grain Yield (t/ha)	Residual Min-N (kg/ha)	N Fert cost (\$/ha)	Emissions (kg CO ₂ -e/ha)
Full N	300	12.1	65.5	842	1460
Full – min N	282	12.0	46.9	793	1373
$Full - min N + N_{min}$	225	12.0	30.9	632	1096
Full + Quick N	155	9.2	30.5	434	752
Zero N	0	5.6	28.2	0	0
LSD (0.05)		0.7	8.3		

N fertiliser price assumed = \$1289/t (SustaiN)

Performance Indicators

Dryland Wheat (Target yield = 8 t/ha)

Treatment	N Fertiliser (kg/ha)	Grain Yield (t/ha)	Residual Min-N (kg/ha)	N Fert cost (\$/ha)	Emissions (kg CO ₂ -e/ha)
Full N	200	10.2	12.3	561	973
Full – min N	171	9.6	9.7	482	835
$Full - min N + N_{min}$	124	9.0	13.9	348	603
Full + Quick N	95	7.9	15.2	268	464
Zero N	0	5.4	10.7	0	0
LSD (0.05)		0.4	NS		

N fertiliser price assumed = \$1289/t (SustaiN)

Conclusions

- SOM can be important source plant available N
 - Pre-existing test methods and model predictions are poor
 - Major limitation to fertiliser N forecasting
- HWEON can be used to predict PMN
 - Site specific, varies with soil type and land use history
 - Commercial testing available, highly reproducible
 - PMN ≠ actual (in-field) N mineralisation
- In-field N mineralisation can be predicted
 - PMN test and local soil temperature and water content data
 - Field N balance data verify N mineralisation predictions
 - Soil test data can improve fertiliser forecasting with no yield penalty, other benefits.

Acknowledgements

- > The Sustainable Farm Fund, project entitled:
 - 'Mineralisable N to improve on-farm N management'
- Co-funded by MPI, industry and regional council partners and Plant & Food Research
- Participating arable and vegetable cropping farmers, PFR and FAR Research farms, SVS project partners
- PFR staff: Craig Tregurtha, Richard Gillespie, Nathan Arnold, Mike Cummins, Denis Curtin, Weiwen Qiu, Rebekah Tregurtha, Kathryn Lehto, and many more …
- FAR staff: Dirk Wallace, Owen Gibson, Richard Chynoweth, Andrei Costan, and NZ Arable

ravens

Thank You

For more information contact:

Mike.Beare@plantandfood.co.nz

DISCLAIMER

The New Zealand Institute for Plant and Food Research Limited does not give any prediction, warranty or assurance in relation to the accuracy of or fitness for any particular use or application of, any information or scientific or other result contained in this presentation. Neither The New Zealand Institute for Plant and Food Research Limited nor any of its employees, students, contractors, subcontractors or agents shall be liable for any cost (including legal costs), claim, liability, loss, damage, injury or the like, which may be suffered or incurred as a direct or indirect result of the reliance by any person on any information contained in this presentation.

plantandfood.co.nz

This presentation has been prepared by The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research). Head Office: 120 Mt Albert Road, Sandringham, Auckland 1025, New Zealand, Tel: +64 9 925 7000, Fax: +64 9 925 7001. www.plantandfood.co.nz