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Abstract 

This paper is the first of two that discuss statistical methods for analysing multi-site plant variety testing data 

sets.  In this paper, methods for estimating genotypic means at each site are introduced.  These methods include 

those that use data from each site (including the classical and spatial methods), as well as methods using data 

across all sites.  The latter include the additive main effects and multiplicative interaction effect model (AMMI) 

and the multi-site best linear unbiased prediction (BLUP).  The implementation of these methods using SAS pro-

grams is outlined. 
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Introduction 

Multi-site testing is commonly used in plant breed-

ing programs before new cultivars are recommended 

for release.  The main purposes of multi-site testing are 

to investigate genotypic performance over representa-

tive environments of the target production area, and to 

determine the areas where the tested genotypes are 

adapted (i.e., quantify genotype stability). 

Genotypic means at each site and across sites pro-

vide the basic information for achieving these pur-

poses.  Surprisingly, practical breeders have paid little 

attention to this important aspect of their testing.  Con-

sequently arithmetic means are generally used regard-

less of the situations.  Conversely, statisticians have 

long recognised that simple averages provide correct 

estimation of means only if some very stringent as-

sumptions are satisfied (Cochran and Cox, 1957; 

Snedecor and Cochran, 1980; Pearce et al., 1988).  

Many approaches have been developed to obtain more 

accurate estimates and/or comparison when the as-

sumptions for using simple procedures cannot be rea-

sonably made, but practical breeders frequently do not 

appreciate these approaches.  One of the reasons may 

be that the proposed methods are usually published in 

statistical journals that may not be in the reference list 

of practical breeders.  In this paper several procedures 

for estimating genotypic means at each site are given.  

A companion paper (Ye et al., 2001) summarises the 

methods for estimating genotypic means across sites 

and comparisons among these means, and methods for 

simultaneous selection of performance and stability.  

Together these two papers form a discussion of some 

methods that practical breeders can use relatively eas-

ily to more effectively use data provided by multiple 

site testing. 

 

Using observations at each site 

Classical methods 

A common practice in analysing multi-site test data 

is to analyse the trial at each site separately.  At each 

site, the trial is a typical one-factor experiment.  De-

pending on the design used, standardised methods are 

available (Cochran and Cox, 1957; Pearce et al., 1988).  

In the following sections, we assume the design at each 

site is a randomised complete block design because it 

is the most commonly used design in multi-site testing. 

The arithmetic mean of a genotype across replicates 

is the easiest way to estimate a genotype's mean per-

formance.  This estimate is unbiased if observations are 

available for every replicate and the variance within 

replicates is the same (i.e., it is homogeneous).  If there 

are missing values, the number of observations for 

each genotype is different and should be taken into 

consideration.  The least-squares procedure has the 

property of providing estimates of means as if all the 

genotypes were included in all the replicates. 
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Spatial analysis 
An important assumption for the above classical 

methods is that the residuals within each block are in-

dependently distributed with a constant variance.  The-

se methods are very inefficient if there is substantial 

heterogeneity within a block.  This heterogeneity 

commonly arises if the number of genotypes tested is 

large.  A group of statistical methods, collectively 

called spatial analysis, have been proposed to reduce 

the within-block heterogeneity.  The following sections 

introduce several of these methods. 

 

Papadakis’s method and its modified versions 

Papadakis (1937) first suggested that the perform-

ance of genotypes in a yield experiment should be ad-

justed for the local trend by an analysis of covariance 

with respect to the treatment (genotypic)-corrected 

yields of the adjacent plots.  The working model for 

this method is 

ijijiij xgy    , 

where xij is the covariate calculated by taking the aver-

age of the genotype-corrected performance of its 

neighbouring plots, and β is the regression coefficient 

associated with the covariate. 

Note that the block effect is removed from this 

model because it is accounted for by the covariate.  

However, it may be better keep the block effect in the 

model to ensure that the method does not perform sig-

nificantly worse than the randomised blocks model. 

Bartlett (1978) suggested that an iterated version of 

this method should be used.  The first iteration is the 

same as the above.  The analysis is then repeated itera-

tively based on the adjusted genotypic means from the 

previous iteration until the difference between the ad-

justed genotypic means in successive iterations is neg-

ligible. 

Wilkinson et al. (1983) suggested that the original 

nearest neighbour means instead of the treatment–cor-

rected neighbour means should be used to adjust the 

target observation. 

The advantage of this class of methods is its sim-

plicity.  However, by using different neighbour plots, 

different results may be obtained.  In practice various 

ways to form the covariate(s) can be tried and the best 

one used for final analysis.  Usually the nearest four 

neighbours are used.  Sometimes, two covariates are 

used.  One is formed using the two longitudinal neigh-

bours and the other is formed using the two latitudinal 

neighbours. 

The effectiveness of this method has been verified 

using real data sets (e.g., Mak et al., 1978; Kempton 

and Howes, 1981; Bhatti et al., 1991; Brownie et al., 

1993; Stroup et al., 1994). 

The necessary computations can be done as fol-

lows.  Firstly, the unadjusted genotypic effect and the 

corresponding residuals are obtained by standard anal-

ysis of variance.  Secondly, new variable(s) are formed 

using the average of the residuals of the neighbouring 

plots, and finally an analysis of covariance is done us-

ing the new variable(s) as covariate(s). 

 

Schwarbach’ weighted nearest-neighbour analysis 

The weighted nearest-neighbour analysis proposed 

by Schwarbach (1985) is based on the following work-

ing model: 

ijbaiij NNDNNDgy  
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where NNDa is the first nearest neighbour difference 

and is calculated as follows: for each plot, the observa-

tion is adjusted by subtracting the mean of the two 

nearest neighbours [ )(
2

1
111   mmm yyyNND ], 

then the mean of NND1 for each genotype is computed 

and denoted as NNDa; NNDb is the second nearest 

neighbour difference and is calculated as: the mean of 

the genotype at the m-th plot adjusted by subtracting 

the average of the two genotypes at the two nearest 

neighbour plots [ NND y y ym m m2 1 1

1

2
   ( ) ], 

and then the mean of the adjusted values for each geno-

type is computed and denoted as NNDb. 

By simulation, Schwarbach (1985) showed that this 

procedure is better than the Wilkinson et al. (1983) 

method.  The effectiveness of this method was also 

proven by Stroup et al. (1994). 

 

Trend analysis based on specific function form 

The local trend may be described by a function of 

plot position.  The general model is 
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ijkkjiijkiijk CRfCRfgy   ),(),(  

where yijk is the observed performance of the i-th geno-

type at the jk-th plot (j-th row and k-th column), and 

f(Rj,Ck) is a function of the position given by the row 

(Rj) and column (Ck) values. 

The difficulty with this type of method is to deter-

mine the right function form.  Polynomial regression 

based on the row and column positions has been used 

successfully (Kirk et al., 1980; Tamura et al., 1988; 

Brownie, 1993).  However, it is difficult to determine 

the optimal degree for the polynomial regression.  Ta-

mura et al. (1988) developed a program based on SAS 

to determine the most suitable polynomial function.  

Once the most suitable function form is defined the 

GLM, including all the variables, can be used to esti-

mate the genotypic means. 

 

Methods based on smoothing the trend 

The spatial trend can also be modelled by using 

methods that do not rely on specific function forms.  

The least-square smoothing method proposed by Green 

et al. (1985) assumed that the second differences of the 

trend (i.e., ti - (ti-1 + ti+1 )/2) are independent and dis-

covered the underlying trend pattern by choosing a 

weighted coefficient that gives a smooth trend and 

minimal residual variance.  This approach can be un-

derstood as calculating the local trend as a weighted 

average of plot performance adjusted for differences 

among genotypes.  Weights are inversely proportional 

to the distance from the adjusted plot and depend upon 

the observed „fertility trend‟ (Clarke et al., 1994).  

Similarly, Hackett et al. (1995) introduced the general-

ised additive model to represent the spatial trend.  In 

their method, the residuals are smoothed against the 

explanatory variable „X‟ (normally the position of the 

plot) by the use of the locally weighted running line 

smoother.  For each value of X, say x, and some given 

value k, the k nearest neighbours are identified and as-

signed a weight according to their distance from x.  

The weight decreases from one for the neighbour with 

the same value of X to zero for the most distant of the 

k neighbours.  These k neighbours of the plot are used 

to fit a linear relationship between the observation and 

the explanatory variables by weighted least squares and 

the fitted value at point x estimates the smooth function 

at that point. 

Clarke et al. (1994) applied the least-squares 

smoothing to 12 experiments with hexaploid wheat and 

found that it was more efficient than the classical 

methods and the Papadakis method.  They also devel-

oped a PASCAL program based on a procedure sug-

gested by Green et al. (1985) to find the weight 

coefficient and the estimate of genotypic effect.  For 

the generalised additive model, Hackett et al. (1995) 

showed how to implement it by use of the S-Plus soft-

ware.  SAS function PROC TPSPLINE can be used as 

well. 

 

Correlated error model 

The existence of local trends in a field trial usually 

implies that the neighbouring plots are more alike than 

those farther apart.  By using a less restrictive assump-

tion about the residuals, better estimates of the geno-

typic means can be obtained.  To accommodate the 

spatial correlation structure of the residuals, the semi-

variogram concept used in geostatistics to model spa-

tial correlation structure is used.  Semivariogram is 

defined as one half the variance of the difference be-

tween two observations a given distance apart, and 

measures the spatial variability as a function of the 

distance between observations. 

Zimmerman and Harville (1991) and Stroup et al. 

(1994) showed that the correlated error model ap-

proach was efficient, whereas Brownie et al. (1993) 

found that accounting for a trend with a correlated er-

rors structure only was not effective. 

SAS procedure PROC MIXED provides several 

covariance functions to model the correlated error 

structure and may be sufficient for analysing most field 

trials.  However, PROC MIXED does not compute the 

semivariogram per se.  External estimates of the pa-

rameters for the covariance function are required.  SAS 

procedure VARIOGRAM can be used to determine the 

theoretical semivariogram model by computing the 

sample empirical semivariogram from the observed 

data set.  The two companion functions „Fvariogram‟ 

and „Mvariogram‟ of Genstat were designed for find-

ing suitable covariance functions from the observed 

data.  Once a semivariogram model is selected, the 

unknown parameters describing variance and the spa-

tial correlation can be estimated using the REML pro-

cedure and the genotypic means are estimated using 

generalised least squares. 
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Besag and Kempton (1986) first difference model 

The first difference method of Besag and Kempton 

(1986) assumes that the first differences between adja-

cent plots (i.e., zi = yi+1 - yi) are uncorrelated random 

variables with identical variance ( t

2
) and other 

sources of variation are negligible.  In other words, the 

systematic trend is assumed to be removed completely 

from the observations by first difference operation. 

The advantages of this method are that the compu-

tation is simple and that the linear component of the 

trend can be removed completely, and consequently the 

estimates of genotypic effects are better than the classi-

cal methods.  The disadvantage is that the resulting 

estimates may be less accurate if the linear component 

of the trend only takes a small proportion of its overall 

variation.  Baird and Mead (1991) applied this method 

to analyse data sets generated from a range of yield 

models and concluded that this method was more effi-

cient than a randomised block analysis and an incom-

plete block analysis when the yields were from models 

with trend components. 

A generalised linear model using the differenced 

observations as the raw data provides the estimates of 

the genotypic means (see Appendix 1). 

 

Linear variance model 

An extension of the above first difference model is 

the so-called linear variance model described by Wil-

liams (1986), and Besag and Kempton (1986).  The 

linear variance model superimposes a white noise term 

with variance ( 

2
 ) on the plot observations of the 

first difference model.  This model removes the as-

sumption that the first difference operation eliminates 

the local trend completely.  It can be understood as a 

two-step detrending process; the first step is to remove 

the linear component of the trend and the second step is 

to model the remaining trend as a random effect with 

mean zero and variance  t

2
.  Therefore, it increases 

the power of detrending as confirmed by Besage and 

Kempton (1986), Baird and Mead (1991) and Wu and 

Dutilleul (1999). 

The procedure LVARMODEL of Genstat is spe-

cially developed for this method. 

Autoregressive integrated moving average (ARIMA) 

Gleeson and Cullis (1987) proposed a method that 

assumes that the „experimental error‟ is white noise 

and the „spatial trend‟ can be regarded as random and 

represented by an autoregressive integrated moving 

average (ARIMA) model.  The d-degree difference 

operation is used to simplify the ARIMA model.  This 

model can be viewed as a two-step detrending process 

as well.  The first step is to reduce the trend effect by 

differencing the original data (not necessarily first dif-

ference) and the second step is to model the remaining 

trend effect by regarding it as a random process with a 

covariance function.  Because the difference operation 

and the covariance function can be selected based on 

the actual data set, this model is more flexible. 

Cullis and Gleeson (1991) extended this procedure 

to two-dimensional spatial analyses.  The two-dimen-

sional analysis was shown to provide more efficient 

estimates of the genotypic means.  Standard procedures 

are now available in S-Plus and Genstat software for 1- 

or 2-dimensional ARIMA analysis. 

Using more than 1,000 variety trials, Cullis and 

Gleeson (1989) demonstrated that the use of this meth-

od resulted in a reduction of 42% in variances of varie-

ty yield differences compared with complete block 

analysis, whereas incomplete block analysis resulted in 

a reduction of 33%.  Gleeson and Cullis, (1987) Kemp-

ton et al. (1994) and Grondona et al. (1996) showed 

that very simple ARIMA models usually worked very 

well in analysing field trials. 

 

Random field models 

Zimmerman and Harville (1991) proposed random 

field models to accommodate local trends.  The local 

trend is modelled by including the “large-scale varia-

tion” and “small-scale” variation.  The „large-scale 

variation‟ is normally modelled through the mean 

structure (difference, smoothing operation or using a 

specific function); and the „small-scale‟ variation is 

modelled through a spatially correlated structure (cor-

related error models).  In this sense, many approaches 

mentioned above can be regarded as special forms of 

the random field models.  For instance, the correlated 

error model takes account of only the „small-scale‟ 

variation.  But the methods using specific function and 

the first difference approach model only the „large-

scale‟ variation.  Clearly, it would be better if both the 

„large-scale‟ and „small-scale‟ variations could be tak-
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en into account.  For instance, using a function or dif-

ference operation to account for the „large-scale‟ varia-

tion, and a correlated error to account for the „small-

scare‟ variation (Brownie et al., 1993).  The ARIMA 

analysis discussed above assumed a specific class of 

covariance function.  Other types of covariance func-

tions may also be used. 

 

Using observations from whole tests 

All data in the multi-site testing data set can be used 

to estimate (predict) the genotypic means at each site.  

The additive main effects and multiplicative interaction 

model (AMMI) and the multi-site best linear unbiased 

prediction (BLUP) methods are introduced in the fol-

lowing sections. 

 

AMMI Model 

The AMMI model combines the additive model 

used in analysis of variance (ANOVA) with principle 

component analysis (PCA).  The additive part of the 

AMMI model is estimated first with ANOVA, and the 

multiplicative part is estimated using the PCA on the 

ANOVA's residuals.  The direct estimation of the GE 

interaction is generated by the multiplication of a geno-

type interaction PCA (IPCA) score by an environment 

IPCA score (Gauch, 1988).  The AMMI model can be 

written as 

ijjkik

R

k

kjiij egy   
1

 , 

where yij is the mean of i-th genotype in j-th environ-

ment, m is the overall mean, μ is the effect of i-th 

genotype, gi is the effect of the j-th environment, λk is 

the k-th singular value of the GE interaction residual 

matrix; αik and βkj are corresponding principal compo-

nent scores for genotypes and environments, respec-

tively, and θij is the residual which contains both the 

unexplained interaction and the pure experiment error. 

The αik and βkj are obtained by multiplying the 

square root of the k-th singular value with its corre-

sponding eigenvectors of the genotypes and environ-

ments, respectively. 

To accurately estimate genotypic means the opti-

mum number of interaction principal component axes 

needs to be determined.  Gauch (1988) suggested a 

postdictive and a predictive assessment for this.  The 

postdictive assessment uses an F-test to identify the 

significance of each IPCA (root mean square differ-

ence between the observed and expected values, i.e., 

the square root of error mean square).  The predictive 

assessment splits the data set into a part for model con-

struction and a part for model validation and uses the 

cross validation technique.  The root mean square of 

the predictive difference (RMSPD) and the mean 

square error (MSE) of the estimation [MSE(model)] 

are used to measure the success of the prediction.  

Smaller values of RMSPD and MSE(model) indicated 

good predictive success.  RMSPD is calculated as fol-

lows: the differences between the prediction and vali-

dation observations are first squared and summed over 

all genotypes and environments and divided by the 

numbers of validation observations, and then its square 

root is taken.  The MSE(model) can be computed ap-

proximately as 

22222 )(   RMSPDVMVM  , 

where  M

2
 is the variance of the model;  V

2
 is the 

variance of validation observations and can be estimat-

ed empirically by the error mean square 
2

 . 
2

MV  is 

the variance of the difference between the model and 

the validation observations and can be empirically es-

timated by the MSE(model – validation). 

Piepho (1994) suggested that when data-splitting 

procedures were applied to RCB designs, the complete 

block rather than single observations should be ran-

domised.  In the case that only one replicate is used for 

validation, the estimate of MSE(model) can be approx-

imated as 

)1/()(ˆ)( 22  bbbRMSPD V   , 

where b is the number of blocks in the design, and v is 

the number of genotypes, vMSBb V /)()(ˆ 2   

with MSREP being the mean square of block. 

All the necessary computations for the AMMI 

model can be done using SAS or other statistical soft-

ware.  See Appendix 2 for a SAS-based program for 

this model. 

Cornelius et al. (1996) proposed a method which 

adjusts the least square estimators of the main effects 

and multiplicative components above by multiplying 

them by their respective shrinkage factors.  The shrink-

age factors for the genotypic and environment main 

effects are sg = max (1- Fg
-1

, 0), se = max (1- Fe
-1

, 0), 
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where the Fg and Fe are the F-statistics for testing the 

genotypic and environment effects against the error 

mean square.  The shrinkage factor for the k-th multi-

plicative component is sk = max (1- Fk
-1

, 0) ,with Fk = 

b

df

k

k



 

2

2
,where dfk is the degrees of freedom associated 

with k-th multiplicative component, and can be com-

puted as v + s –1 –2k.  This approach uses all the mul-

tiplicative components and consequently this difficult 

issue for the classical AMMI model is avoided.  A 

simulation study showed that this approach is at least 

as good as the classical AMMI model (Cornelius and 

Crossa, 1999). 

 

Multi-site BLUP 

The Best Linear Unbiased Prediction (BLUP) 

method was developed for predicting the random effect 

when the working model is a mixed linear model 

(Henderson, 1984).  To apply the BLUP method in 

estimating the genotypic means, it is necessary to de-

fine at least one of the main effects as random.  In the 

traditional sense, the genotypic effect is fixed because 

the experimenters are only interested in the particular 

set of genotypes.  However, White and Hodge (1990) 

argued that the genotypic effect could be regarded as a 

random effect if the set of genotypes can be regarded 

as a random sample of a single population.  More gen-

erally, an effect may be regarded as a random effect if 

the levels of the effect may reasonably be assumed to 

come from a probability distribution (Maclean et al., 

1991; Robinson, 1991).  If we assume that genotype 

effect is random, and the environment effect is fixed, 

then the multi-site linear model can be written as 

y uij j ij ij     , 

where  j  =  + e j  represents fixed effects and iju  = 

g i  + ijge)(  represents random effects. 

This model can be written in matrix notation as 

y = X + Zu + e , 

where X and Z are design matrixes which link the ob-

servation in y with the fixed and random parts, respec-

tively. 

The BLUP of the random effect u is 

CV
-1

 (y - X
0
) . 

The best linear unbiased estimation (BLUE) of the 

fixed part is 

X
0
 = X X V X X V y( ' ) '  1 1

 . 

The BLUP of the genotypic means at each site is 

BLUP (y) = X
0 
+ CV

-1
 (y - X

0
) . 

where V is the covariance matrix between the observa-

tions in y, and C is the covariance matrix among the 

observations in y and the unobservable true genotypic 

effects. 

The above equation is the general BLUP prediction 

equation in the sense that the C and V matrices can be 

of any type.  It is clear that the BLUPs of genotypic 

means can be easily obtained once the matrixes V and 

C are determined.  Therefore, the most important issue 

in the application of the BLUP method is to define V 

and C.  In the following sections, several situations are 

considered 

 

Case 1: Homogenous mean variances 

Assume that the first s rows of the Y vector are the 

means of the first genotype at „s‟ sites.  If the test is 

balanced and the mean variance is homogenous, C and 

V matrices are block diagonals with s  s sub matrices 

V* and C*, respectively.  The non-diagonal elements 

of V
*
 and C

*
 are  g

2
, and the diagonal elements are 

   g ge

2 2 2  and  g ge

2 2 , respectively, where 

 g

2
 is the genotypic variance,  ge

2
 is the genotype-by-

environment variance and 
2

 is pooled error. 

 

Case 2: Heterogeneous GE variances and homogene-

ous within site error variances 

In multi-site testing, the mean variances are normal-

ly heterogeneous since genotypes contribute differently 

to the GE interaction and/or the within site error vari-

ance is different.  The contribution of each genotype to 

the GE interaction variance is proposed as a stability 

parameter and termed the stability variance (Shukla, 

1972).  Therefore, a more realistic model should take 

the different stability variances into account.  Assume 

the within site error variance is homogeneous, geno-

typic effect is random and environment effect is fixed, 

and the V and C matrixes are block diagonal with s  s 

sub matrices V* and C*, respectively.  The non-
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diagonal elements of V* and C* are  g

2
 and the diag-

onal elements are    g i ge

2 2 2   and  g i ge

2 2 , 

respectively. 

 

Case 3: Both GE variances and within site error vari-

ances heterogeneous 

If both the GE interaction variance and the within 

site error variance are heterogeneous, the V and C ma-

trixes are the same as for case 2 except that the within 

site error variance varies from site to site. 

If the sole objective of the analysis is to predict 

genotypic means, SAS procedure MIXED can be used 

to carry out the analysis (for statements see Appendix 

3) using the observed genotypic means at each site as 

the observational units. 

Piepho (1997; 1998) extended this mixed model-

based method to the linear model with multiplicative 

component.  Again it assumes that the genotypic effect 

is random and the environmental effect is fixed, and 

that V and C are still block-diagonal matrixes with sub-

matrixes V* and C*, respectively.  The non-diagonal 

elements of V
* 

and
 
C

* 
are  g jk j k

k

R
2

1




 ' , and the 

diagonal elements are  g jk

k

R

p

2 2

1

2 


  and 

    g jk

k

R

p

2 2

1

2 2  


 , respectively, where  p

2
 is 

the residual variance based on the cell mean model and 

contains the interaction variance and part of the error 

variance,  
2 2 e r/ , and jk is the k-th score of the 

j-th environment. 

 

Conclusion 

The classical methods for estimating the genotypic 

means at each site of a multi-site variety trial are sim-

pler, but do not take the possible spatial heterogeneity 

among plots into consideration, and do not use all the 

information contained in multi-site test data.  Spatial 

analysis using the information of other plots, particu-

larly the neighbouring plots, can therefore significantly 

improve estimates of true means.  However, there is no 

clear rule to guide the selection of the appropriate spa-

tial model.  In practice several of the models could be 

used and the best one determined.  Most of the meth-

ods can be easily implemented using SAS and/or Gen-

stat, which is commonly accessible.  Moreover, 

specialised software such as ASREML (Gilmour et al., 

1996) has been developed.  Therefore, it is now time 

for practical breeders to become familiar with these 

methods and for those familiar with the methods to 

make simple “plug in the data” versions available so 

that full use can be made of their benefits. 

The AMMI model is more flexible in the sense that 

there is no requirement for a large number of geno-

types/sites.  However, to determine the number of in-

teraction principle component axes to use for the 

classical AMMI model is not a trivial problem.  The 

shrinkage estimators seem to be better than the classi-

cal AMMI model.  The multi-site BLUP is better than 

the classical AMMI when variance components can be 

estimated accurately.  In addition, the missing GE 

combinations do not create serious problems.  Howev-

er, to obtain accurate estimates of the variance compo-

nents, the number of tested genotypes and/or the 

number of sites must be large.  As with the classical 

methods, neither AMMI nor multi-site BLUP takes 

possible systematic heterogeneity among plots into 

account.  Using the spatially adjusted values as the raw 

data for the AMMI or multi-site BLUP analysis the 

advantages of both types of methods could be ex-

plored.  Patterson and Nabugoomu (1990) outlined 

such a two-step procedure.  Cullis et al. (1998) devel-

oped a method that combines spatial analysis and mul-

ti-site BLUP into a single step, and showed that it is 

more efficient than the two-step procedure.  However, 

special software is required to carry out the analysis 

and, as stated above, simplified „plug in the data‟ soft-

ware and recognition of the advantages of the methods 

are needed. 
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Appendix 1: SAS programs for implementing some spatial methods 

 

In the following programs, A is a data set consisted of differenced observations, ROW and COL are variables 

to index the row and column positions of the plots, respectively. 

 

1.1. Simple RCB design analysis 

Using GLM Using MIXED 

PROC GLM; PROC MIXED; 

   CLASS GEN BLOCK;    CLASS GEN BLOCK; 

   MODEL YIELD = GEN BLOCK;    MODEL YIELD=GEN; 

   LSMEANS GEN;     RANDOM BLOCK 

RUN;    LSMEANS GEN; 

 RUN; 

 

1.2. Correlated error model 

Assume that the error covariance structure can be modelled by a spherical covariance function. 

Keep block structure Ignore block structure 

PROC MIXED NOPROFILE; PROC MIXED NOPROFILE; 

 CLASS GEN BLOCK;  CLASS GEN; 

 MODEL YIELD = GEN BLOCK;  MODEL YIELD = GEN; 

 PARMS () () ()/NOITER;  PARMS () () ()/NOITER; 

 REPEATED /SUB = BLOCK TYPE 

                                     = SP(SPH) (ROW COL); 

 REPEATED /SUB = INTERCEPT TYPE 

                                     = SP(SPH) (ROW COL); 

LSMEANS GEN; LSMEANS GEN; 

RUN; RUN; 

(Note: PARMS statement defines the parameters of covariance function estimated externally) 

Other available covariance function are: EXP: exponential, GAU: Gaussian, and POW: Power. 

 

1.3. First difference 

The difference operation is done within block Block structure is ignored  

PROC MIXED DATA = A METHOD = REML; PROC GLM DATA = A; 

 CLASS GEN BLOCK;  CLASS GEN ; 

 MODEL YIELD = GEN;  MODEL YIELD = GEN; 

 RANDOM BLOCK;  LSMEANS GEN; 

 LSMEANS GEN; RUN; 

RUN;  

 

1.4. Trend analysis: 
 see Brownie et al.,(1993) 

 

1.5. Nearest neighbour analysis: 

 see Brownie et al.,(1993) 
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Appendix 2. SAS program for AMMI model. 

 

/* Obtain GE means*/ E = D‟*D;  

Proc Glm; V= D*D‟; 

Class site gen; Call eigen (E1, E2, E); 

Model yield = site block(site) gen gen* site; Call eigen (V1, V2, V); 

Lsmeans gen*site; C = E1[1,1];  

Out = mset lsmean = my; E = E2[,1]; V= V2[,1]; 

/* Obtain GE residual */ ;/* first multiplicative component/ 

 Proc Glm set = mset; Y1=C‟*V*E‟; 

    Class site gen; C= E1[2,1]; E= E2[,2]; V = V2[,2]; 

     Model my = site gen; /* second multiplicative component*/ 

    Output out = setR Residual = ry; Y2=C‟*V*E‟; 

/* Get multivariate form of GE means*/ /* multiplicative effect*
3
/ 

Proc sort data = mset; GE = Y1+ Y2; 

  By gen; /*overall, genotypic & site means*/ 

Data mset (keep= y1-ys gen); Use mset; 

  Array yy(s) y1-ys; Read all into M; 

  Do site = 1 to s; OM = M[:];/* overall mean*/ 

  Set mset; OM = [v,s,OM]; 

  By gen; /*Genotypic mean*/ 

  yy(site) = myield; VM = M[,+]; 

  If last.gen then return; Vm = VM/s; 

Data mset (keep= y1-ys); Do i = 1 to s; 

   Set mset;   VM = VM|| VM; End; 

/* Get multivariate form of GE residual*/ VM = VM [1:v, 1:s]; 

Proc sort data = setR; /*site means*/ 

  By gen; SM = M[+,]; 

Proc transpose; SM = SM/v; 

  Out = RGE (rename (_1=yr1 _2=yr2    s=yrs
1
)); Do i = 1 to v; 

  By gen; Id = site; SM= SM//SM; 

Data RGE (keep= y1-ys); End; 

  Set RGE; SM = SM [1:v, 1:s] 

/*Singular value decomposition*/  Reset print; 

Proc iml; s = ?
1
; Pre = Gm + SM +GE – OM; 

v = ?
2
; /*Compute RMSPD*/ 

s = ?
2
; Y = Pre – Val

4
; 

Use RGE; RMSPD = Y[##];RMSPD = RMSPD/(v*s); 

Read all into D; RMSPD = RMSPD**0.5; 
 

1
 the „s‟ should be replaced by the number of sites. 

2
 the question marks are to be replaced by the number of genotypes and the number of sites. 

3
 assume two multiplicative components are required. 

4.
Val is the vs matrix and consists of GE means obtained using validation part of data. 
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Appendix 3. Multisite BLUP 

 

Assume that environment effect is RANDOM and genotype effect is FIXED.  In following programs, the 

BLUE of fixed (GEN) effect and the BLUP of the random (SITE) are obtained; the BLUPs of genotypic means at 

each site can be computed in terms of the mixed linear model.  If plot means are used, BLUP (y ij) = BLUE 

(GENi) + BLUP (SITE j) + BLUP [(BLOCK(SITE j)]+ BLUP [(GEN*SITE) ij].  If genotypic means at each site 

are used, BLUP (y ij) = BLUE (GENi) + BLUP (SITE j).  Alternatively, the ESTIMATE statement in PROC 

MIXED can be used to obtain the BLUPs of genotypic means at each site. 

 

3.1 Using plot means  

Homogeneous within site error variances Heterogeneous within site error variances 

PROC MIXED; PROC MIXED; 

 CLASS GEN SITE BLOCK;  CLASS GEN SITE BLOCK(SITE); 

 MODEL YIELD = GEN/DDFM  

                                  = SATTERTH SOLUTION; 

 MODEL YIELD = GEN/DDFM = SATTERTH SOLUTION; 

 RANDOM SITE BLOCK(SITE) GEN*SITE;  RANDOM SITE BLOCK(SITE) GEN*SITE/SOLUTION; 

RUN;  REPEATED /SUB = SITE TYPE = UN SOLUTION; 

 RUN; 

 

3.2. Using genotypic means at each site 

Homogenous mean variances Heterogenous mean variances 

PROC MIXED METHOD = REML;  PROC MIXED METHOD = REML;  

 CLASS GEN SITE;   CLASS GEN SITE;  

 MODEL YIELD = SITE/SOLUTION;   MODEL YIELD = SITE/SOLUTION;  

 RANDOM INT GEN/SOLUTION;  RANDOM INT /SUB = SITE /SOLUTION; 

RUN;  REPEATED / GROUP = GEN TYPE = UN(1); RUN; 

 

 


