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Abstract 

Crop models require high-quality data to develop reliable functions that can represent the crop 

response to the surrounding environments. Data preparation, therefore, is a vital prerequisite for 

crop modelling exercises. Agricultural researchers spend a considerable amount of time collecting 

data from different sources and scales to ensure that reliable data is generated. In this paper, we 

discuss three common issues, 1) incomplete metadata, 2) missing values and 3) outliers during 

data integration for a 2-year project conducted at two Plant & Food Research sites. In the first 

section of the paper, we presented a programming approach to deal with these issues with data 

science tools, such as R and Python. Programming languages ensured the reproducibility of the 

process of data preparation. In section two, the application of a dashboard system was discussed 

to streamline sensor data for two purposes which were irrigation scheduling and data quality 

checking. The dashboard provided researcher the ability to monitor the soil water content in near-

real-time, and prepare the sensor data ready for subsequent usage. Advanced data science tools 

can indeed mitigate the tedium of data preparation and increase the integrity of agricultural 

research data. However, it must be noted that the interactions between the data users and 

collectors are still vital to provide high-quality data from different sources.  

 

Additional keywords: crop modelling status, data integrity, data preparation, data streamlining, 

field experiments 

 

 

Introduction 
 

The Crop models have helped scientists, 

policymakers and farmers make informed 

decisions on research directions, 

regulations and farm practices worldwide 

(Ewert et al., 2015; Holzworth et al., 2018; 

Holzworth et al., 2015; Jones et al., 2017). 

Further improvement of crop models is 

necessary to represent the temporal and 

spatial variations that occur in the real 

world. Robust datasets play a critical role in 

improving the applicability of crop models 

and minimising the uncertainty within such 

tools (Holzworth et al., 2018). Specialised 

teams have been organised to tackle data 

quality and shareability in the Agricultural 

Model Intercomparison and Improvement 

Project (AgMIP). High-level protocols for 

data quality evaluation are in place, yet data 

quality remains one of the major difficulties 

for crop modelling exercises (Seidel et al., 

2018). Low quality data, which can be 

caused by unnoticed modification of 

samples or incorrect data manipulation, 

possess relatively high uncertainty (Gianni 

et al., 2010). The data uncertainty will 

propagate to the model output, which can 
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reduce the model accuracy and usefulness 

(Mannschatz & Dietrich, 2017). The 

complexity of data preparation increases 

when there are various data sources over 

multiple experimental sites, which also 

requires considerable amounts of time to 

verify the integrity of the data for model 

development (Brown et al., 2018). 

Datasets obtained from different sources 

tend to vary in different ways (Wickham & 

Grolemund, 2017). Depending on 

individual experience, the preparation may 

involve multiple stages such as error 

checking, variable aggregation and 

exploratory data analysis. Data integrity can 

be jeopardised when there are several 

manual processes without a standardised 

protocol. Nevertheless, efforts have been 

made to generalise data preparation for 

statistical analysis. Zuur et al. (2010) 

reported a detailed checklist for data 

exploration to avoid common statistical 

issues in the ecological field. The checklist 

standardised visual tools that can aid data 

preparation, although these tools are 

orientated towards statistical science and 

could be challenging to use for junior 

researchers who have limited statistical 

background. A project-oriented procedure 

could shed some light on data preparation 

for modelling practices in respect to the 

FAIR (Findable, Accessible, Interoperable 

and Reusable) data principles (Wilkinson et 

al., 2016). 

Model development and validation 

generally requires data from three aspects: 

1) local climate; 2) crop and management; 

3) soil (Kersebaum et al., 2015). The 

complete dataset consists of these three 

aspects, therefore, can have uncertainties 

from two levels. First, each aspect has 

random errors stemmed from equipment, 

sampling protocols or other unnoticeable 

reasons (Gianni et al., 2010). Secondly, 

integrated data are incomplete or lost track 

of which data are up-to-date due to 

inconsistent practices of data manipulation 

during preparation, which can cause 

incorrect interpretation and model structure. 

We will focus on addressing the second 

level in this paper because it is the most 

cost-effective approach to evaluate and 

collate existing data for model 

development. 

This paper aims to: 1) document the 

procedure we adapted to integrate data 

obtained from different sources; 2) explore 

the solutions for fast-tracking the 

identification of sources of errors; 3) 

attempt to standardise the data preparation 

of field data for crop modelling exercises. 

We hope these efforts can help to improve 

the efficiency and accuracy of data 

preparation for crop modelling exercises 

carried out researchers. There are two 

sections after a brief description of the 

project in this paper. Section One describes 

the potential causes of three common issues 

in the dataset with practical solutions. 

Section Two introduces an example: using 

a dashboard to facilitate data preparation via 

advanced visualisation in near real-time for 

sensor data. 

 

Brief description of the project 

 

A two-year project (2018-2020) was 

conducted at the Plant and Food Research 

sites in Havelock North (39°39'13.4'' S, 

176°51'35.8'' E) and Lincoln (43°37'28.5"S, 

172°28'03.5"E) (Table 1). The project aim 

was to investigate the effect of agronomic 

practices on pea yield and pea protein 

composition. The main factors were cultivar, 

sowing date and fertiliser application rate. 

Two identical field experiments were 

conducted in the first year, one at each site. 

The same sampling protocol was followed to 

collect phenology and biomass data 

fortnightly. In the second year, two different 
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field experiments were set up at each site. 

The experiment at the Havelock North site 

aimed to test the consistency of the findings 

from the first year with less frequent 

measurements. The experiment at the 

Lincoln site was set up in the rain-out shelter 

facility (Michel et al., 2015). An auto 

logging system was set up in this facility to 

monitor the soil water content (SWC), with 

data recorded every 15 mins. The data were 

used to schedule the irrigation requirements 

of the different treatments and for 

subsequent water balance analysis during 

modelling activities. 

 
Table 1:  Key information about the experiments. 

 

Experiment 

ID 

Year  Location Key 

Measurements 

Frequency 

1 2018/19 Havelock 

North 

biomass 

phenology* 

fortnightly and final yield 

assessment 

2 2018/19 Lincoln biomass 

phenology* 

fortnightly and final yield 

assessment 

3 2019/20 Havelock 

North 

biomass 

phenology* 

inter-season phenology 

development and final yield 

assessment 

4 2019/20 Lincoln biomass 

phenology* 

sensor data 

Seven biomass and phenology 

measurements at key development 

stages  

15 mins interval logging for soil 

water content (TDR); 10 mins 

interval logging for all the other 

sensors (soil temperature, canopy 

cover, canopy temperature, 

canopy reflectance) 

 

*Phenology in this study consists of branch, node and leaf number, and flowering time. 

 

R (R Core Team, 2019) was the main 

software used to develop a procedure of data 

preparation, via a tool package called 

Rmarkdown (Allaire et al., 2019). Python 

and Grafana were the tools used to develop 

the dashboard. Data were stored and 

transmitted by two database libraries SQLite 

and PostgreSQL. 

 

 

 

Section One 

The importance of metadata 

 

The first challenge was the inconsistency 

of variable names within and across 

experimental sites. There were three 

specific issues identified with the variable 

names: 1) multiple variable names for the 

same plant trait; 2) a mismatch of variable 

names across different sites and; 3) the 

inconsistency of variable names presented 

in the data life cycle (from field data to 

downstream analysis). The first two issues 
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were caused for various reasons. Sudden 

changes in plant development made it 

necessary to create new variables to record 

the changes. For example, pea grains 

sprouted while still in the mother plants, 

whereas we expected dormancy in the pea 

grains. The last issue was due to the naming 

conventions for crop models which usually 

differ from the variable names that 

researchers use for field data collection, 

further complicated by their individual 

preferences.  

The reusability of the data increases by 

eliminating these issues. One possible 

approach adopted here was to communicate 

with team members and identify the causes 

of issues to form well-documented metadata. 

Generally, the metadata should contain 

sufficient information which can empower a 

second researcher to visualise the 

experiment and understand the meaning of 

variables. Table 2 provides an example of the 

tabular metadata used in this study. There 

were four critical parts including name, 

description, units and equation. 

Abbreviations were used for field data 

collection, while more informative variable 

names were used for the calculated variables. 

Each variable requires a minimum 

description of the name, meanings and 

possible methods if applicable. Units are for 

reporting the data on different scales. 

Equations are crucial for calculated variables 

since equations reflect the dependence of 

particular variables. 

 

Table 2:  An example of metadata for agricultural field experiments. 
 

Name Description Units Equation 

Date The date for trait measurement NA NA 

Treatment 3 cultivars: A, B and C 

3 sowing dates: 5-Oct-18, 26-

Oct-18 and 16-Nov-18 

NA NA 

HA Harvest area for each 

measurement. Quadrats of 0.5 

m2 were used  

m2 NA 

TFW Total fresh weight of plant 

sample in the harvest area. 

Machinery cut to ground level.  

g NA 

Total_Fresh 

Yield 

The total fresh yield calculated 

from specific treatment plot 

kg/ha TFW/Ha*10 

VWC Volumetric water content in a 

layer (100 mm thickness) in the 

designated plot.  

mm3/mm3 NA 

SWC Soil water content in a 

designated plot 

mm VWC*100 
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The metadata table can be extended 

incrementally to incorporate more variables 

when data reach a new analysis phase. For 

instance, yield-relevant variables for each 

plot are probably sufficient during the 

exploratory data analysis phase. 

Summarised variables that represent 

treatment effects will be necessary when a 

conclusion is needed. Soil water content 

(SWC) and climate variables are required 

for water balance calculations. Parameters 

of crop models can be included once a 

significant effect is identified.  

An R (R Core Team, 2019) script-based 

approach was used with Rmarkdown 

(Allaire et al., 2019) to tackle metadata 

management. At the beginning of data 

preparation, a great amount of effort had 

been made to clarify the meaning and 

sample methods for all variables via 

frequent communication with data 

collection teams. The metadata for different 

data sources, such as biomass and climate 

data, were then processed by R script with 

clear documentation of rationales about any 

modification on the metadata. The metadata 

were stacked and stored in a relational 

database (DB) powered by SQLite (a light 

version of the Structured Query Language 

database engine). Relations of metadata and 

data were described and established in the 

Rmarkdown file. This approach presents 

five advantages including 1) Automation of 

the process by programming languages; 2) 

Variables can be tracked efficiently because 

of the direct comparison from different 

sources; 3) R and SQLite are free for any 

purpose of use; 4) SQLite DB is stable and 

storage efficient; 5) high shareability and 

findability. 

 

Are missing values (NA) truly missing? 

 

Missing values (NA) are common in 

phenological data collected in field 

experiments due to the high likelihood of 

unexpected events. However, NA could be 

introduced to Excel worksheets during the 

data entry stage, especially when there are 

more columns and rows than can be 

comfortably displayed on the monitor. In 

this pea project, we observed that some 

measurements were mismatched with 

incorrect plot number or treatment. These 

mismatches are difficult to detect by direct 

observation of the raw data and will confuse 

subsequent data users. 

Visual aids are particularly useful to 

identify NA. Using an R package inspectdf 

(Rushworth, 2019), Figure 1 shows an 

example of a ranking chart that was 

generated by counting the percentage of NA 

presented in each variable. The variable, 

Nitrogen content in Dead materials 

(N_Content_Dead), had 100% of NA and 

stood out immediately. Close attention 

should be paid to the difference between the 

bound variables. For example, the variable 

sub-sample fresh weight (SSFW) had 16% 

of NA, while the NA percentage increased 

to 23% in sub-sample dry weight (SSDW) 

after the samples were oven-dried. These 

two variables should have the same number 

of observations. 

To further investigate the source of NA, 

key variables were selected to do 

preliminary exploratory data analysis. The 

dry matter percentage of plant samples is 

usually a constant number within one 

sampling event, regardless of sampling 

methods used. Hence, the dry matter 

percentage of sub-samples (SSDM_PC) and 

partitioning samples (partDM_PC) were 

plotted together (Figure 2), with the harvest 

events labelled on each data point. A 

positive relationship with less variation is 

expected between the two calculated values. 

However, the harvest event H3 in site 2 has 

SSDM_PC at 0 while partDM_DCs are 

greater than 0, which suggests that H3 could 
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be the source of NA (Note: NA are denoted 

as 0s here since NA cannot be drawn as 

numeric values). The process can be 

iterated through other key variables to 

clarify the meaning of NA.  

 

 

Figure 1:  Percentage of missing values (NA) in each variable. 

 

 
Figure 2:  Exploratory data analysis for data quality inspection. The text label represented the 

harvest number.  
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Outliers or typographical errors (Typos) 

 

The black dots on both sides of the line in 

Figure 2 illustrate the variability in the 

weight measures (SSDW and partDW). 

Variability could be attributed to various 

factors such as instrument errors, errors 

introduced during sample processing, typos 

during data entry or true outlier values. 

Standard processing for samples may 

consist of three steps: measurements of 

fresh samples, measurements of dried 

samples and data entry. These steps could 

be error-prone. For instance, decimals could 

be misplaced when manually transferring 

values from the hard copy datasheet to 

electronic ones. On occasions, we observed 

that the plant component dry weight was 

greater than its fresh weight because of 

misplaced decimals in the Excel sheet. 

Scatter, histogram and boxplot are the 

three standard graphical tools to examine 

abnormal values. Figure 3 shows the boxplot 

for the number of leaves per stem per plant 

in six treatments over two sites. In the first 

treatment (Cultivar A, Early sown and zero 

Nitrogen; CA_E_0N), the leaf number has a 

group of values (triangles) exceed 40 leaves 

per stem and categorised as outliers for the 

cultivar A. It could be a group of true outliers 

because of the cultivar responding to the 

unique environment or errors caused by 

incorrect data recording. Further 

investigation, such as seeking expert 

knowledge and extra visualisation effort, is 

necessary to trace the reason for this 

particular data behaviour. 

Typos can be mitigated by reducing the 

number of manual steps in the process. For 

instance, scales with the auto-recording 

system could minimise the handling errors 

during sample weighing. In contrast, 

phenological data measurements like the 

number of leaves and branches can be 

challenging to be automated and rely on 

individual experience. Specific training 

could reduce the possibilities of errors and 

using pre-setup data validation rules can help 

to prevent data entry errors. 

 

 

 
 

Figure 3:  Boxplot of leaf number over six treatments for data quality check. 
 

 



 

Innovative procedures of data preparation 32 Agronomy New Zealand 50: 2020 

Section Two 

 

Information from sensors can provide a 

dramatic improvement in data resolution. 

However, issues like the failure of 

electronic components in the sensor can 

cause missing data. Additionally, manual 

sensor data processing can be tedious. We 

implemented a workflow that could 

automate the process from data preparation 

and storage to dashboard reporting at near-

real-time (15 to 30 mins delay). Figure 4 

illustrates an overview of the workflow. 

The sensors recorded the soil moisture 

readings and stored the data in a .dat file by 

the Campbell Scientific Logger Net 

software via radio transmission. Python 

scripts were used to concatenate sensor data 

with the correct metadata (plot design and 

treatment) in a Jupyter notebook (An 

integrated development environment). We 

re-used Python scripts that were developed 

previously to calculate soil water content 

(SWC) and soil water deficit (SWD; deficit 

to the profile water content at the beginning 

of the experiment). The raw sensor data and 

processed values were then uploaded into a 

PostgreSQL database which connects with 

the dashboard tool, Grafana. 

 

 
Figure 4:  Overview of the workflow for near real-time data streaming. 

 

 

To establish the workflow, the first step 

was to configure the database structure for 

the processed data. Therefore, an 

independent Jupyter notebook was 

developed as a configuration file. Python 

scripts in the notebook generated two 

critical outcomes, including a .npy file (a 

file created by Python to store array 

structured data) and a PostgreSQL database. 

The .npy file contained the information 

about the number of observations in the 

existing raw data, which was starting the 

point for importing subsequent data. The 

database was the structure used to store 

processed values. The similar Python script 

for data manipulation was packed into an 

iteration function within a second Jupyter 

notebook. The second notebook imported 

the new data and appended the information 

to the database at an interval of 15 mins.  

Grafana automatically updated the 

dashboard by querying the database every 

15 mins. Figure 5 shows a snapshot from the 

Grafana dashboard for soil water profile. 
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The interactive dashboard provided detailed 

information when users hovered on the 

panel. Multiply panels could be displayed in 

one dashboard to monitor the status of 

individual sensors and detailed water usage 

from each plot. 

It was necessary to host the second 

notebook and a Grafana instance on an active 

computer or server in order to keep the data 

streamlined. We used two systems, a 

Windows desktop computer and a Linux 

server, to host notebook and the Grafana 

instance respectively due to internal network 

restrictions. 

The workflow created a template for data 

preparation of other sensors such as 

pyranometer and temperature sensors. We 

could monitor the sensor status and check 

data quality simultaneously. Processed data 

in PostgreSQL DB is ready for any 

subsequent analysis exercises.

 

 
 

Figure 5:  A Snapshot of the dashboard for irrigation scheduling. 

 

Conclusion 

 

We applied a combination of data science 

tools to attempt to achieve error-free 

datasets. We found that the programming 

language R can efficiently identify and 

track potential errors in the data using its 

well-documented metadata and 

visualisation tools and that the dashboard 

system is useful for processing sensor data 

and irrigation scheduling. This integration 

of data science tools provides agricultural 

researchers with a new avenue to improve 

the efficiency of data preparation and 

ensure data integrity for future usage. 

However, researchers who have limited 

experience in programming languages and 

databases may find it challenging to adapt 

the applications in this paper. It must be 

noted that an understanding of the data is 

more important than the tools one chooses 

to process the data and maintain data 

integrity. Poor data quality commonly 

stems from lack of understanding and 

communication between the data users and 

the collection team. Wrong assumptions are 

possible if researchers who process samples 

misunderstand the objectives of the 

sampling protocol or have insufficient 

information about the sources of missing 

values or outliers. Metadata developed by 

both sides to capture details of experiments, 
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therefore, are critical to maximise the value 

of agricultural data. 
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